Click models cheat sheet

Terminology

Variables:

- E: a user examines an object on a SERP;
- A: a user is attracted by the object's representation;
- C : an object is clicked; and
- S : a user's information need is satisfied

Expression	Meaning
u	A document (documents are identified by their URLs, hence the notation).
q	A user's query.
r	The rank of a document.
c	A placeholder for any concept associated with a SERP (e.g., query-document
	pair, rank, etc.).
s	A user search session.
\mathcal{S}	A set of user search sessions.
\mathcal{S}_{c}	A set of user search sessions containing a concept c.
u_{r}	A document at rank r.
r_{u}	The rank of a document u.
N	Maximum rank (SERP size); usually equals 10.
X	An event/random variable.
x	The value of a random variable X.
X_{c}	An event X applied to a concept c.
x_{c}	The value that a random variable X takes,
$x_{c}^{(s)}$	when applied to a concept c.
$\mathcal{I}(\cdot)$	The value that a random variable X takes, when applied to concept c in a
	particular session s.

Evaluation

Log-Likelihood

$$
\begin{equation*}
\mathcal{L L}(M)=\sum_{s \in \mathcal{S}} \sum_{r=1}^{n} \log P_{M}\left(C_{r}=c_{r}^{(s)} \mid \mathbf{C}_{<r}=\mathbf{c}_{<r}^{(s)}\right), \tag{1}
\end{equation*}
$$

where P_{M} is the probability measure induced by the click model M.

Perplexity

$$
\begin{equation*}
p_{r}(M)=2^{-\frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}}\left(c_{r}^{(s)} \log _{2} q_{r}^{(s)}+\left(1-c_{r}^{(s)}\right) \log _{2}\left(1-q_{r}^{(s)}\right)\right)} \tag{2}
\end{equation*}
$$

where $q_{r}^{(s)}$ is the probability of a user clicking the document at rank r in the session s as predicted by the model M, i.e., $q_{r}^{(s)}=P_{M}\left(C_{r}=1 \mid q, \mathbf{u}\right)$.

Click Models

Random Click Model (RCM)

$$
\begin{equation*}
P\left(C_{u}=1\right)=\rho . \tag{3}
\end{equation*}
$$

Rank-based CTR Model (RCTR)

$$
\begin{equation*}
P\left(C_{r}=1\right)=\rho_{r} \tag{4}
\end{equation*}
$$

Document-based CTR Model (DCTR)

$$
\begin{equation*}
P\left(C_{u}=1\right)=\rho_{u q} \tag{5}
\end{equation*}
$$

Position-based Model (PBM)

$$
\begin{align*}
& P\left(C_{u}=1\right)=P\left(E_{u}=1\right) \cdot P\left(A_{u}=1\right) \tag{6}\\
& P\left(A_{u}=1\right)=\alpha_{u q} \\
& P\left(E_{u}=1\right)=\gamma_{r_{u}} . \tag{8}
\end{align*}
$$

Cascade Model (CM)

$$
E_{r}=1 \text { and } A_{r}=1 \Leftrightarrow C_{r}=1
$$

$$
\begin{equation*}
P\left(A_{r}=1\right)=\alpha_{u_{r} q} \tag{10}
\end{equation*}
$$

$$
P\left(E_{1}=1\right)=1
$$

$$
\begin{equation*}
P\left(E_{r}=1 \mid E_{r-1}=0\right)=0 \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
P\left(E_{r}=1 \mid C_{r-1}=1\right)=0 \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
P\left(E_{r}=1 \mid E_{r-1}=1, C_{r-1}=0\right)=1 \tag{14}
\end{equation*}
$$

Dynamic Bayesian Network Model (DBN)

User Browsing Model (UBM)

$$
\begin{gather*}
P\left(E_{r}=1 \mid C_{1}=c_{1}, \ldots, C_{r-1}=c_{r-1}\right)=\gamma_{r r^{\prime}}, \\
r^{\prime}=\max \left\{k \in\{0, \ldots, r-1\}: c_{k}=1\right\}, \tag{23}
\end{gather*}
$$

