Click models cheat sheet

Terminology

Variables:

- E: a user examines an object on a SERP;
- A: a user is attracted by the object's representation;
- C: an object is clicked; and
- S: a user's information need is satisfied.

Expression	Meaning
\overline{u}	A document (documents are identified by their URLs, hence the notation).
q	A user's query.
r	The rank of a document.
c	A placeholder for any concept associated with a SERP (e.g., query-document pair, rank, etc.).
s	A user search session.
${\mathcal S}$	A set of user search sessions.
\mathcal{S}_c	A set of user search sessions containing a concept c .
u_r	A document at rank r .
r_u	The rank of a document u .
N	Maximum rank (SERP size); usually equals 10.
X	An event/random variable.
x	The value of a random variable X .
X_c	An event X applied to a concept c .
x_c	The value that a random variable X takes, when applied to a concept c .
$x_c^{(s)}$	The value that a random variable X takes, when applied to concept c in a particular session s .
$\mathcal{I}(\cdot)$	An indicator function.

Evaluation

Log-Likelihood

$$\mathcal{LL}(M) = \sum_{s \in \mathcal{S}} \sum_{r=1}^{n} \log P_M \left(C_r = c_r^{(s)} \mid \mathbf{C}_{\leq r} = \mathbf{c}_{\leq r}^{(s)} \right), \tag{1}$$

where P_M is the probability measure induced by the click model M.

Perplexity

$$p_r(M) = 2^{-\frac{1}{|S|}} \sum_{s \in S} \left(c_r^{(s)} \log_2 q_r^{(s)} + \left(1 - c_r^{(s)} \right) \log_2 \left(1 - q_r^{(s)} \right) \right), \tag{2}$$

where $q_r^{(s)}$ is the probability of a user clicking the document at rank r in the session s as predicted by the model M, i.e., $q_r^{(s)} = P_M(C_r = 1 \mid q, \mathbf{u}).$

Click Models

Random Click Model (RCM)

$$P(C_u = 1) = \rho. (3)$$

Rank-based CTR Model (RCTR)

$$P(C_r = 1) = \rho_r. (4)$$

Document-based CTR Model (DCTR)

$$P(C_u = 1) = \rho_{uq}. (5)$$

Position-based Model (PBM)

$$P(C_u = 1) = P(E_u = 1) \cdot P(A_u = 1) \tag{6}$$

$$P(A_u = 1) = \alpha_{uq} \tag{7}$$

$$P(E_u = 1) = \gamma_{r_u}. (8)$$

Cascade Model (CM)

$$E_r = 1 \text{ and } A_r = 1 \Leftrightarrow C_r = 1$$
 (9)

$$P(A_r = 1) = \alpha_{u_r q} \quad (10)$$

$$P(E_1 = 1) = 1 \tag{11}$$

$$P(E_r = 1 \mid E_{r-1} = 0) = 0 (12)$$

$$P(E_r = 1 \mid C_{r-1} = 1) = 0 (13)$$

$$P(E_r = 1 \mid E_{r-1} = 1, C_{r-1} = 0) = 1.$$
 (14)

Dynamic Bayesian Network Model (DBN)

$$E_r = 1 \text{ and } A_r = 1 \Leftrightarrow C_r = 1 \quad (15)$$

$$P(A_r = 1) = \alpha_{u_r q} \ (16)$$

$$P(E_1 = 1) = 1 (17)$$

$$P(E_r = 1 \mid E_{r-1} = 0) = 0 (18$$

$$P(S_r = 1 \mid C_r = 1) = \sigma_{u_r q}$$
 (19)

$$P(E_r = 1 \mid S_{r-1} = 1) = 0$$
 (20)

$$-1 \mid E = -1 \mid C = -0 \rangle - \cdot \cdot (21)$$

$$P(E_r = 1 \mid E_{r-1} = 1, S_{r-1} = 0) = \gamma,$$
 (21)

User Browsing Model (UBM)

$$P(E_r = 1 \mid C_1 = c_1, \dots, C_{r-1} = c_{r-1}) = \gamma_{rr'},$$
(22)

$$r' = \max\{k \in \{0, \dots, r-1\} : c_k = 1\},\$$
(23)